

Polysemantic Dropout: Conformal OOD Detection for Specialized LLMs

Ayush Gupta^{1,2}, Ramneet Kaur¹, Anirban Roy¹, Adam D. Cobb¹, Rama Chellappa², Susmit Jha¹

²Johns Hopkins University

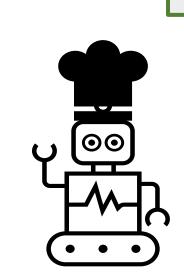
EMNLP 2025 Suzhou, China 中国苏州

THE PROBLEM: HALLUCINATION

Consider a 'GourmetChef' bot, a cooking expert.

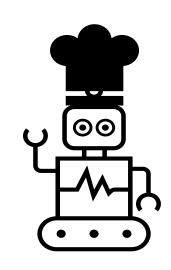
What's the proper technique for making a French hollandaise sauce that won't break?

¹SRI



Of course. You'll need to emulsify egg yolks and melted butter. The key is to add the warm butter to the yolks very slowly while whisking constantly over a double boiler. Maintain a temperature of around 140°F (60°C) to ensure the proteins don't curdle...

How do I fix a leaky kitchen faucet?



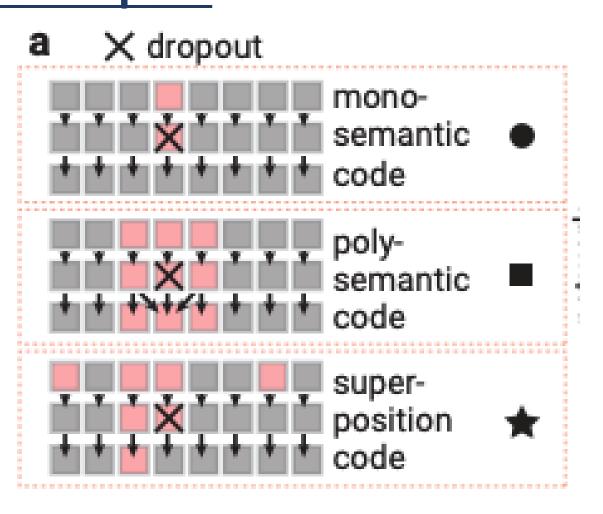
Fixing a leaky faucet is like preparing a delicate consommé—it requires precision. First, clarify the area by removing any residue with a *solution of* white wine vinegar and sea salt. Next, tighten the primary gasket using a pastry scraper to avoid scratching the chrome. If it still leaks, apply a gelatin-based sealant and let it set for 2-3 hours...

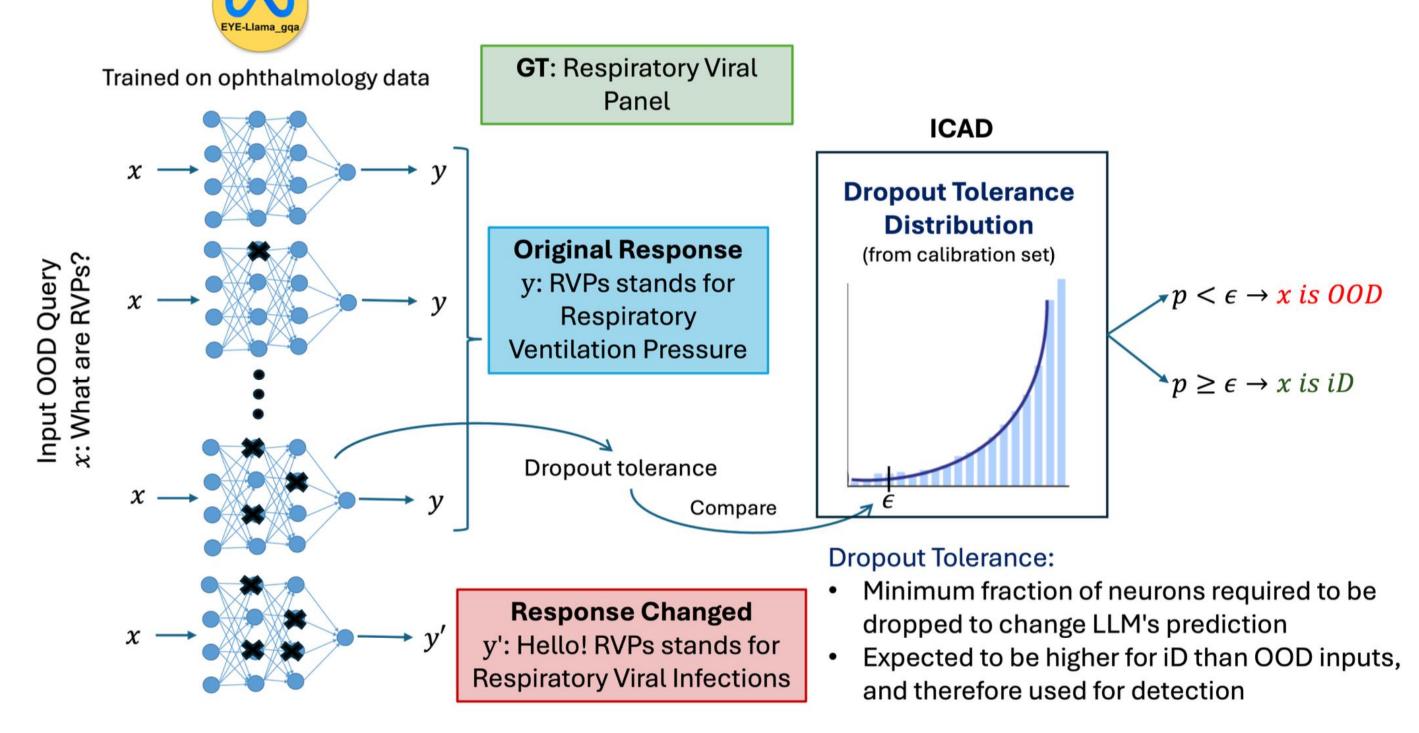
It hallucinates on out of domain data Dangerous in critical applications like healthcare!

OUR IDEA: Detecting OOD inputs

Background: LLMs are Polysemantic, thus, somewhat robust to dropout

- ➤ Is this 'level of robustness' an indication of confidence?
- > Can we exploit this?





Measure LLM confidence through 'iterative dropout'

Ask same question repeatedly, each time introducing more dropout.

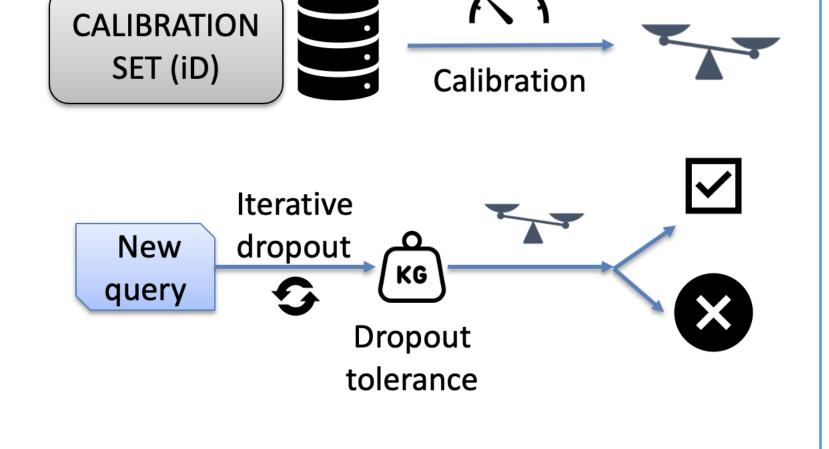
- ➤ If response changes easily, LLM is not confident. Probably OOD!
- ➤ If response is robust, LLM is confident. Probably iD!

ICAD: INDUCTIVE CONFORMAL ANOMALY DETECTION

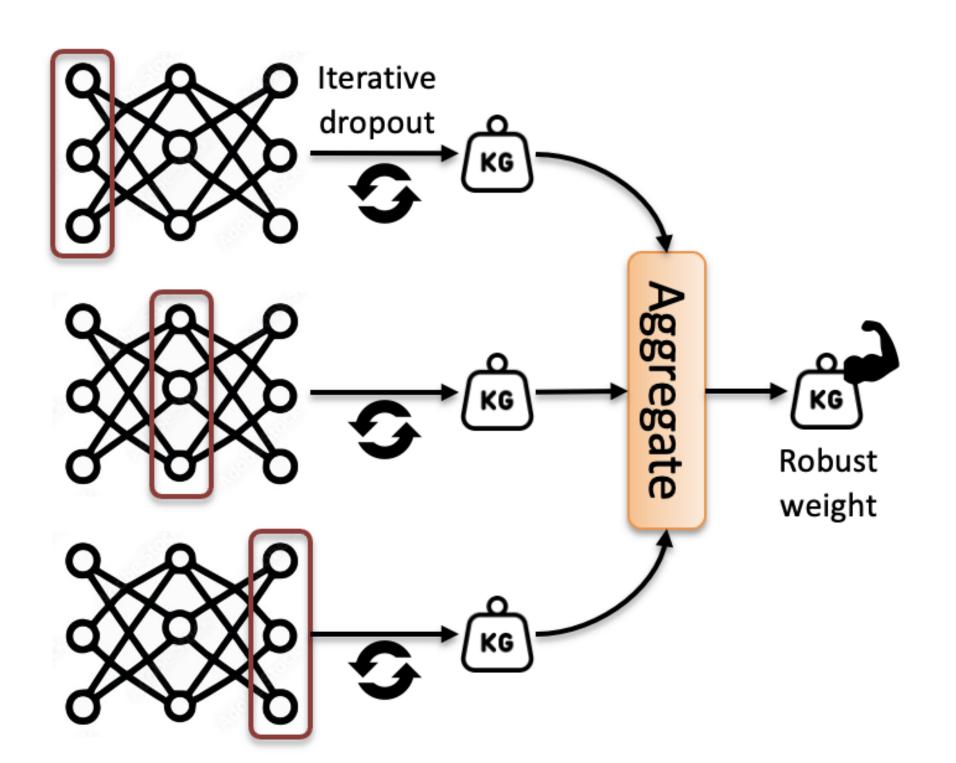
Mathematical framework for anomaly detection, theoretical bounds on false alarm rates

- Use an in-domain query set to calibrate the scales of ICAD
- Use calibrated ICAD to detect anomalies (OOD queries)

NO TRAINING NEEDED



ENSEMBLING



Iterative dropout across one layer gives one measurement for the non-conformity of the query

To reduce noise and get a more robust prediction, we aggregate the measurements across different layers

Aggregation method should be 'valid' to maintain theoretical bounds on False Alarms!

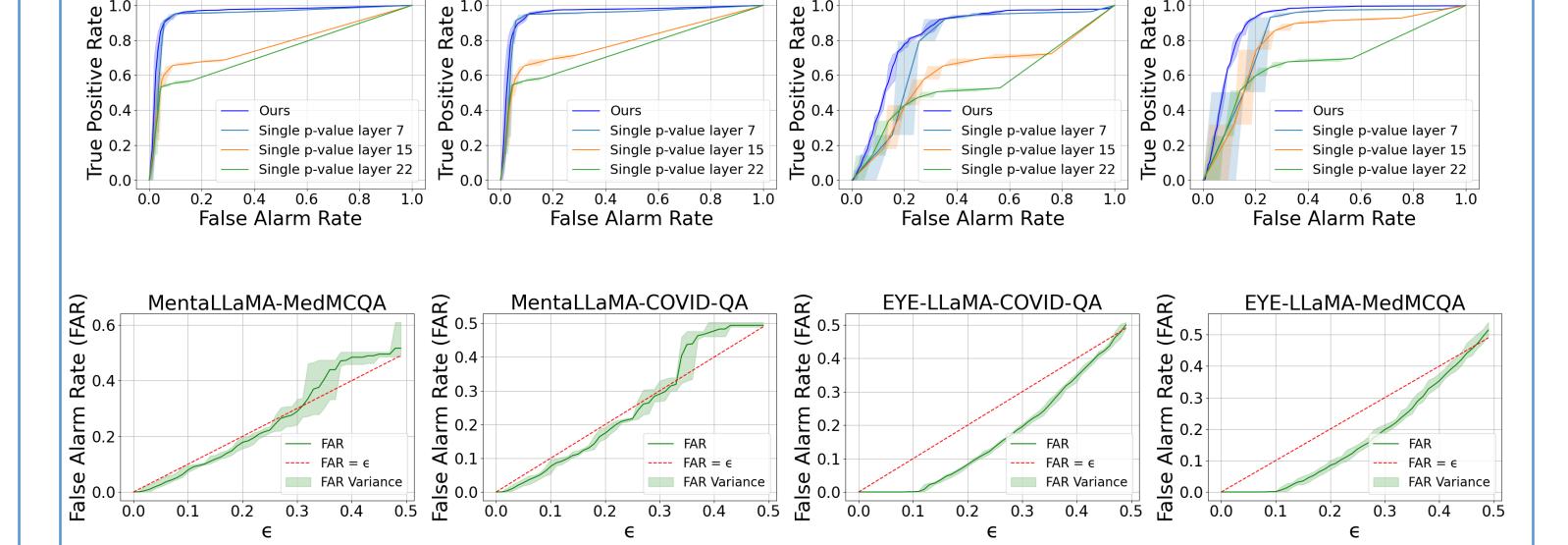
Use *valid merging functions* (Vovk and Wang, 2020) → Arithmetic Mean, Geometric Mean etc. Vladimir Vovk and Ruodu Wang. 2020. Combining p-values via averaging. *Biometrika*, 107(4):791–808.

RESULTS

Across multiple LLMs and datasets, our method can detect OOD queries quite well. All while having a user-defined bounded false alarm rate!

Model	EYE-LLaMA		MentaLLaMA	
OOD Dataset	CovidQA	MedMCQA	CovidQA	MedMCQA
Base Score Method with Layer 7	0.53	0.54	0.73	0.72
Base Score Method with Layer 15	0.48	0.58	0.71	0.69
Base Score Method with Layer 22	0.48	0.57	0.70	0.70
Single <i>p</i> -value Method with Layer 7	0.77	0.83	0.93	0.94
Single p-value Method with Layer 15	0.61	0.79	0.78	0.78
Single p-value Method with Layer 22	0.56	0.68	0.74	0.73
Ensemble Approach with Majority Voting	0.75	0.81	0.55	0.55
Ours with K=3 (Layers 7, 15, and 22)	0.83	0.91	0.95	0.96

EYE-LLaMA-COVID-QA



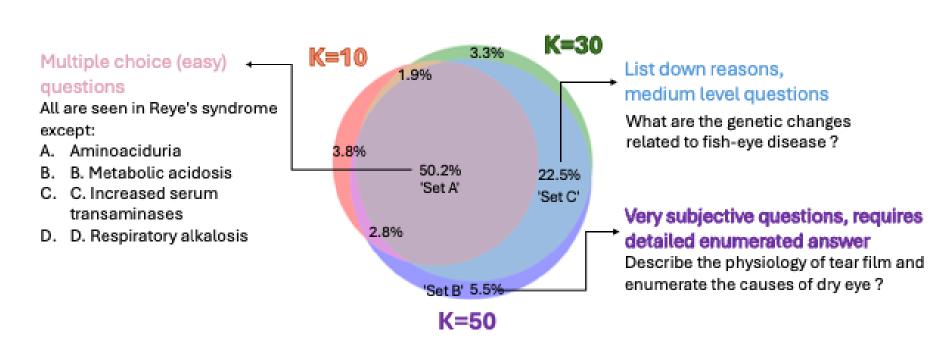
MentaLLaMA-COVID-QA

MentaLLaMA-MedMCQA

ANALYSIS AND ABLATIONS

Model	EYE-	LLaMA	MentaLLaMA		
OOD Dataset	CovidQA	MedMCQA	CovidQA	MedMCQA	
Bonferroni Method	0.67	0.79	0.93	0.93	
Harmonic Mean	0.76	0.85	0.94	0.94	
Geometric Mean	0.80	0.89	0.95	0.95	
Arithmetic Mean	0.83	0.91	0.95	0.96	

Different valid merging functions



Difficulty of queries is related to the ease of breaking the response!

CONTACT

EYE-LLaMA-MedMCQA

Ayush Gupta Final Year PhD student **Johns Hopkins University**

Open for

- Spring 2026 internships
- Full-time roles starting **Summer 2026**